- 博客(58)
- 收藏
- 关注
原创 算法竞赛、数据结构学习路线以及教程:为你的算法学习提供便利!
Algorithm All in ONE???? Let Everyone Study Algorithm Easier???? 仓库在这里因为准备实习????,整理了一下算法的课件、书籍、论文、习题、OJ网站,总结了学习路线。不管是准备面试,进BAT????;还是自学算法竞赛????;或者单纯的课外拓展????;不管你算法能力如何,这个仓库里总有适合你的算法学习宝藏✈️!对Coder????????而言,算法学习都是有必要的,只是不同领域可能要求深浅不同所以,咱们开
2020-06-11 11:14:06 1020
原创 fastText详解
1. 什么是fastText英语单词通常有其内部结构和形成⽅式。例如,我们可以从“dog”“dogs”和“dogcatcher”的字⾯上推测它们的关系。这些词都有同⼀个词根“dog”,但使⽤不同的后缀来改变词的含义。而且,这个关联可以推⼴⾄其他词汇。在word2vec中,我们并没有直接利⽤构词学中的信息。⽆论是在跳字模型还是连续词袋模型中,我们都将形态不同的单词⽤不同的向量来表⽰。例如,“dog”和“dogs”分别⽤两个不同的向量表⽰,而模型中并未直接表达这两个向量之间的关系。鉴于此,fastText提
2020-07-11 20:45:58 1467
原创 NLP概述
1. 什么是NLP自然语言处理 (Natural Language Processing) 是人工智能(AI)的一个子领域。**自然语言处理是研究在人与人交互中以及在人与计算机交互中的语言问题的一门学科。**为了建设和完善语言模型,自然语言处理建立计算框架,提出相应的方法来不断的完善设计各种实用系统,并探讨这些实用系统的评测方法。2. NLP主要研究方向信息抽取:从给定文本中抽取重要的信息,比如时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词等等。通俗说来,就是要了解谁在什么时候、什么
2020-07-11 20:45:24 1094
原创 详解seq2seq
1. 什么是seq2seq在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如:英语输⼊:“They”、“are”、“watching”、“.”法语输出:“Ils”、“regardent”、“.”当输⼊和输出都是不定⻓序列时,我们可以使⽤编码器—解码器(encoder-decoder)或者seq2seq模型。序列到序列模型,简称seq2seq模型。这两个模型本质上都⽤到了两个循环神经⽹络,分别叫做编码器
2020-07-11 20:44:57 4310
原创 Transformer详解
1. 什么是Transformer《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。2. Transformer结构2.1 总体结构Transformer的结构和Attention模
2020-07-11 20:44:19 4571
原创 XLNet详解
XLNet 是一个类似 BERT 的模型,而不是完全不同的模型。总之,XLNET是一种通用的自回归预训练方法。它是CMU和Google Brain团队在2019年6月份发布的模型,最终,XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果1. 什么是XLNetXLNet 是一个类似 BERT 的模型,而不是完全不同的模型。总之,XLNet是一种通用的自回归预训练方法。它是CMU和Google Brain团队在2019年6月份发布的模型,最终,XLNet 在 .
2020-07-11 20:43:41 6686
原创 说说GloVe
1. 说说GloVe正如GloVe论文的标题而言,**GloVe的全称叫Global Vectors for Word Representation,它是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity)、类比性(analogy)等。**我们通过对向量的运算,比如欧几里得距离或者cosine
2020-07-11 20:43:06 2474
原创 textRNN 与 textCNN详解
1. 什么是textRNNtextRNN指的是利用RNN循环神经网络解决文本分类问题,文本分类是自然语言处理的一个基本任务,试图推断出给定文本(句子、文档等)的标签或标签集合。文本分类的应用非常广泛,如:垃圾邮件分类:2分类问题,判断邮件是否为垃圾邮件情感分析:2分类问题:判断文本情感是积极还是消极;多分类问题:判断文本情感属于{非常消极,消极,中立,积极,非常积极}中的哪一类。新闻主题分类:判断一段新闻属于哪个类别,如财经、体育、娱乐等。根据类别标签的数量,可以是2分类也可以是多分类。自动问
2020-07-11 20:42:35 2900
转载 从0进入智能客服系统
我们会产生一个想法:能不能有一个机器人来回答这些重复的问题,它能 24 小时的工作不用休息,降低客户成本,还能挖掘聊天记录里面的一些有价值的知识点。这就是智能客服产生的背景。1. 智能客服系统智能客服产生的背景:为什么要有智能客服这样的一个产品,或者说研究方向呢?主要有以下这几个原因:我们日常生活中会遇到大量的客服问题,比如说你打电话给联通、移动等,或者说在淘宝上买东西,这些问题大部分都是一些重复的问题,而且频率也特别高,非常的耗人工;对于一个客服密集型的企业来说,大量的人工客服,造成了企业的.
2020-07-11 20:41:18 1140
转载 从0进入推荐系统
推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。 随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。1. 什么是推荐系统推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。.
2020-07-11 20:40:30 291
原创 语音识别之PyTorch-Kaldi详细教程
本文介绍PyTorch-Kaldi。Kaldi是用C++和各种脚本来实现的,它不是一个通用的深度学习框架。如果要使用神经网络来梯度GMM的声学模型,就得自己用C++代码实现神经网络的训练与预测,这显然很难实现并且容易出错。我们更加习惯使用Tensorflow或者PyTorch来实现神经网络。因此PyTorch-Kaldi就应运而生了,它使得我们可以利用Kaldi高效的特征提取、HMM模型和基于WFST的解码器,同时使用我们熟悉的PyTorch来解决神经网络的训练和预测问题。阅读本文前需要理解HMM-DNN.
2020-07-02 21:56:57 13322 4
原创 NLP自然语言处理 【基础+进阶】书籍
回炉炼丹了????两个月,准备好好再提升一下自己,为了我的核心项目Jarvis????️,回炉重造一下。这篇文章主要内容是分享我的暑假书单????这些书都是我精挑细选出来的,豆瓣评分都比较高????暑假目标:主要目的是专业领域的深入,即自然语言处理。拓宽了知识宽度,必须找准发力点。更加深入才行!书籍分类书籍我分为两部分:回顾复习深入提高第一部分: 回顾复习 (快速过一遍)第一本:《自然语言处理》HanLP 作者的书籍,之前没看过,这次想快速过一下,梳理一下NLP的思路。
2020-06-28 21:00:49 1083
原创 程序员装机必备「编程软件+配置环境」基础篇
程序员电脑工作环境打造教程「编程软件+配置环境」因为Big Sur Beta 巨大的BUG,我的Mac被迫重装了一次,所以得重新安装软件以及配置环境????,在痛苦中想着还是记录点什么吧,作为分享和交流。这篇内容我来介绍程序员的电脑(虽然是MacOS上的,不过有些软件在Windows同样存在),装了哪些软件✈️、配置了哪些环境 ????软件安装:????IDE⚙️:Java:IDEAC:CLionPythonPyCharmGoGoland编辑器✍️:
2020-06-26 10:14:32 2276
原创 MacOS Big Sur Beta 测评|使用体验|有哪些BUG?|如何安装?|实际体验如何?|WWDC2020
MacOS Big Sur Beta 测评|使用体验|有哪些BUG?|实际体验如何?前言今年的WWDC可谓是相当精彩啊IOS 14SiriIPadOSApple PenciliWatchmacOS Big SurAirPods Pro自研 ARM CPU 苹果提出了很多创新和思想,其中对于程序猿而言,我觉得值得关注的就是操作系统和CPU了而今天的主角是MacOS Big Sur,这里是官网介绍链接安装我是个折腾党,WWDC结束后,立马去寻找Big Sur有没有体验版,想
2020-06-24 11:11:39 7372 1
原创 RSS这么牛逼,你却不知道,不会用?
一、为什么想介绍RSS?最初是因为自己不是很了解RSS,所有就去学习了一下,结果发现还有这等好东西,它确实解决了一些使用互联网时的问题而且我发现很多人不知道什么是RSS,所以我就一直想向大家介绍它,因为它太有用了,将来会和电子邮件一样重要。不懂得RSS,上网的效率和乐趣都要大打折扣。我在网上找不到简明易懂的介绍文章,只好下决心自己来写。虽然我不是这方面的专业人士,但是我相信你只要耐心读完这篇文章,你就会基本搞懂RSS以及它的使用方法。二、RSS是什么?在解释RSS是什么之前,让我先来打一个比方.
2020-06-18 15:13:09 674
原创 HTTP报文格式与原理
Cookie综述cookie 英文中叫做小甜品,那么Web中这个耳熟能详的词是有什么神奇的功效呢?总的来说:cookie提高用户和服务端的交互性我们知道HTTP是无状态协议,即无法维护历史状态。换句话来说就是,即是你不断的HTTP请求,并且做了一些事,下一次访问时,Web站点也不认识你。这带来很多麻烦,也使得某些服务很难进行比如:逛淘宝、京东,即使没有登录账号,也能加入购物车,下次访问同样有记录身份认证,访问网站时,cookie信息能一定程度认证你的身份推荐广告或者其他业务用户会话状
2020-06-13 11:19:31 394
原创 关于Web缓存那些事
Web缓存原理目标:在不涉及原始服务器的情况下满足客户端HTTP请求如何使用?用户配置浏览器:Web访问经过缓存所有HTTP请求指向缓存对象在缓存中:缓存器返回对象否则缓存器向起始服务器发出请求,接收对象后转发给客户机[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jizmzbqD-1592018307322)( https://picreso.oss-cn-beijing.aliyuncs.com/proxy.png)]缓存服务器既是服务器又是
2020-06-13 11:18:49 438
原创 详解FTP文件传输协议
文件传输协议概述如果你想往你的服务器上传递文件,该怎么办呢?这是个常见的问题,我们常常不仅要传文件,还涉及到下载文件,和管理服务器文件。这时FTP协议出现了!(现在有很多基于FTP的客户端图形化软件,可以在网上下载,连接服务器,轻松管理服务器文件)FTP: 文件传输协议 File Transfer Protocol主要功能:传输文件到远程主机/从远程主机下载文件应用层模式:client/server模式client: 发起传输的一方server: 远程主机ftp
2020-06-13 11:18:04 1535
原创 因特网中的电子邮件SMTP,POP3,IMAP详解
前言电子邮件在很长一段时间是最重要的互联网应用。或许现在我们感受不到,也很少发邮件,因为现在很多即时通信软件:QQ、微信等等。在互联网之初,人们相互通信,大部分是通过发送邮件,所以谈谈因特网中的电子邮件协议是很重要的。电子邮件的组成部分电子邮件通信主要由三大部分组成:用户代理邮件服务器邮件协议一、用户代理 user agents就像我们常常使用的邮箱客户端,我们能直接接触的部分允许用户阅读,回复,转发,保存,编辑邮件消息例如:Outlook, foxma
2020-06-13 11:17:29 4944
原创 详解Internet的目录DNS
DNS体系介绍为什么要有DNSDNS = Domain Name System在Internet中,主机和路由器都有一个标识符: IP地址,这是为了在网络层服务(后面会单独写文章解释)和人对比,ip类似于人的身份证号但是我们彼此称呼的时候,张三 叫 李四 不可能叫他 511024XXXXXX身份证号吧,而是直呼名字,那在互联网中,这些网络设备,也可以拥有名字,这就是域名,也叫主机名DNS 就负责建立 IP地址和主机名之间建立映射关系,负责两者转换。DNS提供的功能DNS是通过专门的服
2020-06-13 11:16:55 405
原创 详解P2P技术
P2P = Peer to Peer现在P2P也有很多不同架构,以下是常见的一些P2P架构纯P2P架构没有总是在线的服务器任意端系统之间直接通信对等方之间可以间断连接并可 以改变IP地址例子:文件分发流媒体VoIP复杂应用纯P2P无法实现P2P: 集中式目录Napster公司首先设计,由中央集中服务器管理当对等方启动时,它通知目录 服务器以下信息IP地址可供共享的对象名称Alice查询文件“Hey Jude” 3) Al.
2020-06-13 11:16:09 3579
原创 程序员必会的Markdown(下)
学习了Markdown相关的基础,装好了Typora了吗,如果都准备好了,我们就开始正式的学习Markdown的语法吧~边学,边在Typora中实现标题:主要用到 # 这个符号# 一级标题## 二级标题### 三级标题#### 四级标题##### 五级标题格式是 # + 一个空格 + 内容显示效果:很简单吧?OK,继续段落格式:字体样式:主要用到 * 和 _ 这两者是等效的*斜体文本*_斜体文本_**粗体文本**__粗体文本__***粗斜..
2020-06-13 11:15:36 640
原创 程序员必会的Markdown(上)
学会Markdown看这一篇就够了只用一个小时就能完全掌握这一效率利器Markdown是什么?Markdown是一种轻量级标记语言,创始人为 約翰·格魯伯(英語:John Gruber)2004年诞生。它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的 XHTML(或者HTML)文档。在语法上有很大一部分是跟 亚伦·斯沃茨(Aaron Swartz)共同合作的,不知道大家有没有听说过这个计算机天才,豆瓣高分电影互联网之子就是讲的他的故事,可惜在26岁就自杀去世了,是一个很大..
2020-06-13 11:15:14 1288 1
原创 HTTP协议那些事
HTTP:超文本传输协议hypertext transfer protocol是我们每天使用最多的协议之一每当我们访问网站,浏览网页就是基于HTTP协议所以掌握HTTP是十分重要的概述是 Web的应用层协议基于 client/server模式client: 浏览器browser请求, 接收、解释、显示 Web对象server: Web服务器响应请求,发送 Web对象HTTP 1.0: RFC 1945HTTP 1.1: RFC 2616下层的服务是使用 T..
2020-06-13 11:14:31 220
原创 应用层协议原理
应用层是我们日常接触到的层次,比如:应用层体系结构通常有三个模式C/S 模式:服务器:总是打开的主机具有固定的、众所周知的IP地址主机群集常被用于创建强大的虚拟服务器客户机:同服务器端通信可以间断的同服务器连接可以拥有动态IP地址客户机相互之间不直接通信P2P体系结构:没有总是打开的服务器任意一对主机直接相互通信对等方间歇连接并且可以改变IP地址优点:自扩展性强缺点:难以管理C/S P2P
2020-06-13 11:13:58 1384
原创 详解协议层次以及TCP/IP服务模型
经过我们之前对Internet的介绍,Internet是什么,我们可以理解到,Internet是一个极其复杂的系统。为什么我们要分层呢?清楚的结构允许我们对大型复杂系统定义其特定部分,探讨其各部分的关系,比如分层参考模型的讨论模块化使得系统的维护、升级简化改变其某一层服务的具体实现,对系统其余部分透明(不影响)分层的弊端?各层可能重复较低层功能 …两种参考模型ISO/OSI 七层参考模型是国际通用标准,为我们后来发展做参考实际使用不多,比较繁杂。
2020-06-13 11:13:24 340
原创 分组交换网络中的延迟、 丢失和吞吐量
分组丢失和延迟是如何产生的?路由器分组缓冲区队列分组到达输出链路的速率超过输出链路的容量,产生延迟,甚至丢失分组在缓冲区队列排队, 按序等待分组延迟的四s种类型节点处理时延:nodal processing delay:检查错误位选择输出链路高速路由器处理延迟-微妙级排队时延:queueing delay:等待被发送到输出链路上的时间取决于路由器的拥塞程度传输时延:Transmission delay:R=链路带宽 (bps)L=
2020-06-13 11:12:21 1325
原创 电路交换原理和分组交换原理
我们有了 设备, 有了通信链路,那我们如何在网络中传输数据?基本原理:电路交换:每次会话预留沿其路径(线路) 所需的独占资源–电话网分组交换:数据以离散的数据块通过网络 来发送电路交换基于电话网的交换原理网络资源比如宽带被分片多路复用(Multiple Access)分片分配到会话分片没有被会话使用的情况下,分片空载 (不共享)电路级性能(有保证)要求呼叫建立–建立一个专门的端到端线路(意味着每个链路上预留一个线路)链路带宽分片的方式.
2020-06-13 11:11:22 5586 1
原创 谈谈网络边缘部分
在开始之前,再一次谈谈网络结构网络边缘:主机和服务器服务器一般在数据中心接入网络,物理介质:有线通信链路无线通信链路网络核心:路由器网络组成的网络几个名词的含义端系统:就是网络应用程序的设备处在网络的边缘部分客户/服务器 (C/S架构):客户请求,并提供的服务端对端模型:极少或者不采用专门的服务器在端系统之间交互如何将边缘设备连接到网络边缘的路由器呢?接入网络分类粗糙的分类:家庭接入网络机构接入网络广域无线接入.
2020-06-12 23:06:36 1101
原创 什么是Internet?
常常我们接触到Internet这个词,也就是英特网,那英特网到底是什么呢?其实关于如何定义因特网都没有一个确切的说法,所以我们通过侧面来描绘Internet在介绍因特网之前,我们应该了解,什么是计算机网络?计算机网络定义: 两台以上具有独立操作系统的计算机通过某些介质连接 成的相互共享软硬件资源的集合体。两大功能:计算机网络有两大功能:连通性共享性关于连通性,通过定义可以看出,就是计算机通过某种方式连在了一起关于共享性,我认为即是连通之意义所在,在于信息共享,沟通了解了计.
2020-06-12 23:05:54 1656
原创 团队协作的三大工作流
团队协作的三大工作流Git 作为一个代码版本管理系统,利用它强大的版本控制和branch,我们能做出一些优雅的团队协作的工作流。这也是之前我在Git文章谈到的,Git对团队协作具有很大帮助,这篇文章我将来谈谈基于Git的三大工作流。工作流 在英语中叫做:workflow,从名字上看出团队协作应该像流水一样,顺畅。好的工作流能给你团队合作带来很大的好处,有条不紊的应对各种问题。坏的工作流可能会使本来一个很好的项目失败在团队协作上。所以我们来学学程序员常用到的工作流。现在三种广泛使用的工
2020-06-12 22:53:47 572
原创 RNN成长记(五):LSTM与GRU
在本文中,我们将探索并尝试创建我们自己定义的 RNN 单元。不过在此之前,我们需要先仔细研究简单的 RNN,再逐步深入较为复杂的单元(如 LSTM 与 GRU)。我们会分析这些单元在 tensorflow 中的实现代码,最终参照这些代码来创建我们的自定义单元。基本 RNN:对于传统的 RNN 来说,最大的问题就在于每个单元的重复输入都是静态的,因此我们无法充分学习到长期的依赖情况。你回想一下基本 RNN 单元,就会发现所有操作都是单一的 tanh 运算。对于解决短期依赖情况的问题来说,这种结构已.
2020-06-12 22:52:04 705
原创 RNN成长记(四):Attention机制
在这篇文章里,我们将尝试使用带有注意力机制的编码器-解码器(encoder-decoder)模型来解决序列到序列(seq-seq)问题首先,让我们来一窥整个模型的架构并且讨论其中一些有趣的部分,然后我们会在先前实现的不带有注意力机制的编码器-解码器模型基础之上,添加注意力机制。我们将慢慢引入注意力机制,并实现模型的推断。。注意:这个模型并非当下最好的模型,更何况这些数据还是我在几分钟内草率地编写的。这篇文章旨在帮助你理解使用注意力机制的模型,从而你能够运用到更大的数据集上,并且取得非常不错的结果。带有
2020-06-12 22:50:54 805 1
原创 RNN成长记(三):Encoder-Decoder
在本文中,我将介绍基本的编码器(encoder)和解码器(decoder),用于处理诸如机器翻译之类的 seq2seq 任务。我们不会在这篇文章中介绍注意力机制,而在下一篇文章中去实现它。如下图所示,我们将输入序列输入给编码器,然后将生成一个最终的隐藏状态,并将其输入到解码器中。即编码器的最后一个隐藏状态就是解码器的新初始状态。我们将使用 softmax 来处理解码器输出,并将其与目标进行比较,从而计算我们的损失函数。这里的主要区别在于,我没有向编码器的输入添加 EOS(译注:句子结束符,end-of.
2020-06-12 22:50:20 2189 2
原创 RNN成长记(二):文本分类
在第一篇文章中,我们看到了如何使用 TensorFlow 实现一个简单的 RNN 架构。现在我们将使用这些组件并将其应用到文本分类中去。主要的区别在于,我们不会像 CHAR-RNN 模型那样输入固定长度的序列,而是使用长度不同的序列。文本分类这个任务的数据集选用了来自 Cornell 大学的语句情绪极性数据集,它包含了 5331 个正面和负面情绪的句子。这是一个非常小的数据集,但足够用来演示如何使用循环神经网络进行文本分类了。预处理步骤清洗句子并切分成一个个 token;将句子转换为数值 t.
2020-06-12 22:49:32 429
原创 RNN成长记(一):CHAR-RNN
**提示:**关于 RNN 的内容将横跨好几篇文章,包括基本的 RNN 结构、支持字符级序列生成的纯 TensorFlow 实现等等。而关于 RNN 的后续文章会包含更多高级主题,比如更加复杂的用于机器翻译任务的 Attention 机制等。一、概述使用循环结构拥有很多优势,最突出的一个优势就是它们能够在内存中存储前一个输入的表示。如此,我们就可以更好的预测后续的输出内容。持续追踪内存中的长数据流会出现很多的问题,比如 BPTT 算法中出现的梯度消失(gradient vanishing)问题就是其中.
2020-06-12 22:48:48 1052
原创 你想拥有程序员神器吗:iTerm2+Oh_My_Zsh+Tmux
效果图Iterm2 + Oh_my_zsh + TmuxEvery Open LookTmux : Keep Session AliveSession > Window > PaneVim : Edit file or Coding具体如何配置,最近很忙没时间写,空闲会整理一下教程。
2020-06-12 22:47:17 272
原创 Word2Vec将音乐变成向量
机器学习算法在视觉领域和自然语言处理领域已经带来了很大的改变。但是音乐呢?近几年,音乐信息检索领域一直在飞速发展。这篇文章写的是NLP的一些技术是如何移植到音乐领域的。探寻了一种使用流行的 NLP 技术 word2vec 来表示复调音乐的方法。让我们来探究一下这是如何做到的……Word2vec词嵌入模型使我们能够通过有意义的方式表示词汇,这样机器学习模型就可以更容易地处理它们。这些词嵌入模型让我们可以用包含语义的向量来表示词汇。Word2vec 是一个流行的词向量嵌入模型,由 Mikolov 等人于.
2020-06-12 22:44:43 994 2
原创 如何用神经网络预测股票趋势?
前言疫情期间,我爸妈又开始炒股了,鉴于之前做过一个AI结合的量化交易项目,但是不是负责算法部分,所以想自己尝试一下,实现一个算法引擎。纯数据科学只能做参考,最好结合传统量化交易和舆情分析,我后面有时间会尝试三者结合,希望有更好效果。在本教程中,你将了解到如何使用被称作长短期记忆网络(LSTM)的时间序列模型。LSTM 模型在保持长期记忆方面非常强大。阅读这篇教程时,你将:明白预测股市走势的动机;下载股票数据 — 你将使用由 Alpha Vantage 或 Kaggle 收集的股票数据;将数.
2020-06-12 22:43:30 8790 3
原创 Python如何调用系统命令
前言在Python里面,直接调用系统命令,可以快速的完成任务。一般使用os或者subprocess模块,来执行系统命令。os.system()该函数返回命令执行结果的返回值,system()函数在执行过程中进行了以下三步操作:1、fork一个子进程;2、在子进程中调用exec函数去执行命令;3、在父进程中调用wait(阻塞)去等待子进程结束。返回0表示命令执行成功,其他表示失败。注意:使用该函数经常会莫名其妙地出现错误,但是直接执行命令并没有问题,所以一般建议不要使用。用法:os.sys
2020-06-11 11:18:48 658
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
Made In Heaven_: 博主,图全都失效le
真·skysys: 图片都看不了啦
qq_45006022: 不是说dnn部分用pytorch实现么,怎么还运行/local/nnet/run_dnn.sh